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Abstract

We expand and develop even more examples and properties in our
previous paper on Counterexamples in Topology to focus on Separation
Axioms more specifically.

1 Introduction and Overview

In our previous paper on Counterexamples in Topology (aptly named ”Coun-
terexamples in Topology generated by Large Cardinals, part I”), we gave about
4 examples of Large Cardinals generating interesting or bizarre results when
conjoined with specific Large Cardinals. They are:

1. Homogeneity of spaces

2. Stone-Cech Compactification

3. Hausdorff-ness of the Strong Ultrafilter Topology

4. The Either-Or Topology

Separation axioms were not investigated too much in our previous paper,
therefore ours will. Separation axioms and their interaction with Logic, partic-
ularly Set Theory, are not widely explored in the literature, other than brief ap-
plications and interesting properties such as genericity (and Forcing as a whole),
absoluteness, and Martin’s axiom. We also place much more emphasis on:

1. Topological consistency results that can be proved using a Large Cardinal,

2. and Topological hypothesis/assertions that imply (the consistency of) cer-
tain Large Cardinals.

Remark 1. The exploration of Normality in this paper is and will be limited,
given normality’s low intersection with cardinal arithmetic.

aligning with previous literature on Large Cardinals and Topology. To main-
tain the novelty of results in this paper, we will be exploring Large Cardinals
stronger or equal to Huge cardinals.
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2 Separation Axioms ”themselves” and Large
Cardinals

2.1 Rank-into-ranks

The only example we prove with regards to Separation Axioms in our previous
work is of Hausdorff-ness of the Strong Ultrafilter Topology, but this is very
specific. We proved that (3) fails under Vopenka’s Principle.

Question 2.1. Is Hausdorff-ness in general preserved under Vopenka’s Principle
or weaker axiom?

Remark 2. When we say ”preserved” or ”holds under” a Large Cardinal, typ-
ically we mean Topological properties that are ”as usual” even with a Large
Cardinal assertion.

Most arguments and proofs dealing with (3) often deal with some property of
the Strong Ultrafilter Topology first, typically via Ultrafilters and Embeddings,
and then showing that said property is preserved via Ultrafilters and Embed-
dings to show that Hausdorff-ness is still ”possible”. The proof of Question 2.1
will of course rely on ”Hausdorff-ness itself”.

We start off with rank-into-rank axioms, one of the strongest Large Cardi-
nal axioms not known to be inconsistent with AC. This is somewhat cheating,
however, as rank-into-rank axioms are a slightly ”metamathematical”1 Large
Cardinal axiom.

Theorem 2.2. Hausdorff-ness of a Topological space is preserved under I1.

Proof. We use induction ”on” Topological spaces belonging to a specific Vκ,
κ < λ + 1. ”Preserved” in this context means if a Topological space X is
Hausdorff in a specific Vκn

, then it will be Hausdorff in a specific Vκn+n
(we

assume that sets of Vκ-s are well-ordered, in that given κ < λ+1, ⟨Vκ : κ < λ+1⟩
is well-ordered2). Suppose that X ∈ Vκ1 , X a Hausdorff Topological space.
Let f : Vκ1

→ Vκ1
, f is an injection. But Hausdorff-ness is preserved under

injections. Continue for all ⟨Vκ : κ < λ+ 1⟩.

Theorem 2.3. Hausdorff-ness of a Topological space is preserved under I2 and
I3.

Remark 3. Most properties dealing with Rank-into-rank axioms are on the
functions and embeddings ”in” the rank-into-ranks themselves rather than any
properties ”intrinsic” to said functions and embeddings nor the Vκ-levels. For
example, from (Laver 1992) [3], one can generate a free algebra by means of j
from ελ = {j : Vλ ≺ Vλ}.

This raises the question: what are some topological properties of functions
formed from ελ = {j : Vλ ≺ Vλ} itself and other ”purely from I0” sets?

1Meta-set-theoretic or even meta-universal would be a better term.
2This is inspired by the well-order of λ when working with rank-into-rank embeddings.
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Theorem 2.4. Fix λ and let ελ = {j : Vλ ≺ Vλ}. Let X be a set formed by
embeddings of the form of j (admit them to X unrestrictedly). The topology on
X formed by {(j, k) : j ∗ k = j+} is open is Hausdorff.

Note that Theorem 2.4 comes from the fact that if j, k : Vκ ≺ Vκ, then
j+(k) : Vκ ≺ Vκ, and ’∗’ in this context means j+(k). And j+ in the context
of the application relation between embeddings refers to j++. We also set the
elementary embeddings here to ∆0 (I3 holds).

Proof. Define a ”point” in the set X as an embedding of the form of j. Define a
”neighborhood” of a point inX as the set of embeddings {lκ : j ⊂ dom(ln),∀κ <
λ}, in which l : Vκ ≺ Vκ. Let j0 and j1 be distinct embeddings. One needs
to show that l0κ and l1κ (the ”neighborhoods” of j0 and j1) also disjoint, in
that {l0κ(j0) : j0 ⊂ dom(l0),∀κ < λ} and {l1κ(j1) : j1 ⊂ dom(l1),∀κ < λ}.
Proceed via nesting of lengths of sequences of the form l, l(l), l(l(l)), ... and let
⟨κn : n ∈ ω⟩. Then, via repeating l(ln) on embeddings like j0 and j1, we show
that nested l(ln) are disjoint, thus two {l0κ(j0) : j0 ⊂ dom(l0),∀κ < λ} and
{l1κ(j1) : j1 ⊂ dom(l1),∀κ < λ} are disjoint.

Not even under I1 (in which the elementary embeddings set to Σn) is it
the case that X (in Theorem 2.4) is Hausdorff. X appears to have very little
structure.

Chris Good showed that Measurable cardinals can be used to prove several
results about lattices and ultrafilters on topologies. For one, ”there exists an in-
finite amount of measurable cardinals” implies that a finite lattice is isomorphic
to the interval between two T3 topologies on some set iff it is distributive. These
lattices are formed from the set of all possible topologies on a set X. His orig-
inal question was whether there is a characterization of finite lattices (formed
from X) that are isomorphic to intervals between Hausdorff spaces. Measurable
cardinals were eventually picked to answer this question. But given that we can
form sequences of Measurable cardinals from Rank-into-rank axioms, it is no
surprise that we can strengthen Good’s original claims to Rank-into-ranks.

Theorem 2.5. Given I3, one can generate a free ultrafilter ΠSi<ω A on a set
A via ⟨Sα : α < crit(j)⟩.

In many of Good’s theorems, they are applied to finite lattices under mea-
surable cardinals. This can be extended to > ℵ0 lattices however, under Rank-
into-ranks. As a remark, one can create infinite sequences of measurables with
Rank-into-ranks.

Theorem 2.6. Given I1, one can freely choose topologies ”on” the critical point
of I1’s embedding.

Proof. ”topologies on the critical point” means {(X, τ) : X ∈ P (κ0), κ1 ∈
j(X)}, with τ obviously satisfying the axioms for a topology.

3



Theorem 2.7. Given such topologies from Theorem 2.6, if, say, X is Hausdorff,
X is isomorphic to a countable lattice formed from ⟨Sα : α < crit(j)⟩. (I3)

Proof. Let R be a well-founded relation on Vδ. Index members of the said lattice
L (using a relation P ) as {ai : i ∈ n} satisfying i ̸= j implying ai ̸= aj . As
X is Hausdorff, choose 2 separate points x and y in X, ”represented” via the
relation P ”in” {ai : i ∈ n}. Then there exists disjoint neighborhoods of x and
y which are then represented by filters in L.

We can even extend Theorem 2.7 to I1 and Normal spaces.

2.2 Huge Cardinals

We shift ourselves to Huge cardinals.

Theorem 2.8. Continuous functions f : X → Y in jn(κ)M are restricted (with
regards to the co-domain). (in jn(κ)M ⊂ M), given jn(κ)M denoting the class
of all sequences of length jn whose elements are in M .

Proof. Suppose that there is a continuous function in jn(κ)M . Also, we can
assume that the cardinality of said continuous function’s range (in which we
denote by Y ) be ≤ jn. We can suppose that f , the cont. function in jn(κ)M
is ”transformed” n times (iterations, j(f), j(j(f)), jn(f)). This results in a
separate sequence of crit. points of j(f), j(j(f)), jn(f) represented as

{κn : critical point of jn(f)}.

But as f need not be under any critical point, it must be the case that a
function’s image (in Y ) is restricted (≤) under {κn : critical point of jn(f)}.

Remark 4. Originally, Theorem 2.5’s formulation was that T6 (perfectly normal
Hausdorff) spaces could not exist under Huge cardinals, but the proof using
{κn : critical point of jn(f)} with f as a continuous function which precisely
separates quickly fell apart and is now replaced with restrictions of continuous
functions in general.

Chang’s conjecture, proved by Chang in 1963, essentially states that every
model of type (ω2, ω1) for a countable language has an elementary submodel of
type (ω1, ω). A model is of type (α, β) if it is of cardinality α and a unary rela-
tion is represented by a subset of cardinality β. Several variants and implications
of Chang’s conjecture are present in General Topology. Huge cardinals interact
with Chang’s conjecture in a huge way (pun intended); a much stronger version
of Chang’s conjecture (that (ℵω+1,ℵω) → (ℵ1,ℵ0))’s consistency follows from
that of a 2-huge cardinal. To remark, an arguably weaker version of Chang’s
conjecture (that (ω3, ω2) → (ω2, ω1) also follows from an n-huge cardinal.

An elegant consequence of Chang’s conjecture in General Topology explored
by Peter Nyikos is that it is consistent3 to have (κ+, κ) → (ℵ1,ℵ0) for all n < ω

3It also implies.
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with a locally compact Hausdorff space X such that d(X) < ℵω and P (X)
(in which P (X) means cardinal function) s.t. d(X) = κ and P (X) > κ to
have a separable subspace Y where P (Y ) is uncountable (Nyikos), in which
X ∈ (ℵn+1,ℵn) and Y ∈ (ℵ1,ℵ0). To add, if X is compact, then this also
holds for P (X) = t(X). Therefore, one may ask if it is consistent under a very
large cardinal, particularly a measurable cardinal. Also, one could easily replace
”compact” with ”Hausdorff” or ”normal”, but we still need to keep a cardinal
invariant in our clause.

Question 2.9. Is it possible to use Nyikos’s assumption and Chang’s conjecture
to show that limits of nets of a locally compact top. space X are not unique for
|X| > ℵ1?

If Question 2.9 is answered in the positive, this implies that:

2-huge cardinal =⇒ consistency of Chang’s conjecture =⇒ Nyikos’s assumption =⇒

non-Hausdorff-ness of spaces X s.t. |X| > ℵ1.

Proof Sketch. We show that Nyikos’s assumption and Chang’s conjecture imply
non-Hausdorff-ness of spaces X s.t. |X| > ℵ1.

4 Also, use (ℵn+1,ℵn) → (ℵ1,ℵ0),
in which n < ω1. Let a net N of X be such that |N | ≤ |Y |, Y ⊂ X, d(Y ) > ℵ1,
and N ⊂ Y itself.

First of all, in defining N in this way (especially the cardinality of N), we
have that it is consistent to have d(N) ≤ ℵ1, if X is compact. And as |N | ≤ |Y |,
|N | ≤ ℵ2. We can even extend this to other cardinal functions. Note that limits
of nets in X are also cardinal functions. Because of this, simply substitute κ in
Nyikos’s assumption with ℵω1+1, and P (X) with limits of nets in X. But given
the replacement of P (X) with limits of arbitrary limits of nets in X, we have
that limits of arbitrary nets in X are ”homogenized”. Limits of arbitrary nets
in X are homogenized to ℵ1.

This implies that spaces > ℵ1 are able to ”remain” Hausdorff even when
Chang’s conjecture is added.

Remark 5. Initially, the proof of Question 2.9 was focused on spaces of all
cardinalities, but only the > κ case is true.

Per ([5]), he constructs a model of ZFC in which Huge cardinals are consis-
tent. As a core lemma inspired by Tall,

Lemma 2.10. Given a discrete collection Y of subsets of a topological space
X, with each point in Y being of weight < ℵ1 and of cardinality < ℵ1, there

4One can even treat this theorem as a special case of Nyikos’s assumption.

5



is a subspace X ′ of X generated by {ZY }Y ∈Y (in which {ZY }Y ∈Y denotes ZY

the space generated from choosing points from various Y ∈ Y ) such that X is
Hausdorff if and only if X ′ is Hausdorff.

Proof Sketch. Fix a basis BY for each Y ∈ Y . Also, fix a neighborhood system
for each y ∈ Y . The rest of the proof goes as how Tall proves his Lemma 6.
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